Johannes Liesche等《PNAS》2020年
论文题目:Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2
论文作者:Qiyu Xu, Shijiao Yin, Yue Ma, Min Song, Yingjie Song, Shuaicheng Mu, Yunsong Li, Xiaohui Liu, Yunjuan Ren, Chen Gao, Shaolin Chen, and Johannes Liesche
论文摘要:All multicellular organisms keep a balance between sink and source activities by controlling nutrient transport at strategic positions. In most plants, photosynthetically produced sucrose is the predominant carbon and energy source, whose transport from leaves to carbon sink organs depends on sucrose transporters. In the model plant Arabidopsis thaliana, transport of sucrose into the phloem vascular tissue by SUCROSE TRANSPORTER 2 (SUC2) sets the rate of carbon export from source leaves, just like the SUC2 homologs of most crop plants. Despite their importance, little is known about the proteins that regulate these sucrose transporters. Here, identification and characterization of SUC2-interaction partners revealed that SUC2 activity is regulated via its protein turnover rate and phosphorylation state. UBIQUITIN-CONJUGATING ENZYME 34 (UBC34) was found to trigger turnover of SUC2 in a light-dependent manner. The E2 enzyme UBC34 could ubiquitinate SUC2 in vitro, a function generally associated with E3 ubiquitin ligases. ubc34 mutants showed increased phloem loading, as well as increased biomass and yield. In contrast, mutants of another SUC2-interaction partner, WALL-ASSOCIATED KINASE LIKE 8 (WAKL8), showed decreased phloem loading and growth. An in vivo assay based on a fluorescent sucrose analog confirmed that SUC2 phosphorylation by WAKL8 can increase transport activity. Both proteins are required for the up-regulation of phloem loading in response to increased light intensity. The molecular mechanism of SUC2 regulation elucidated here provides promising targets for the biotechnological enhancement of source strength.
论文链接:https://www.pnas.org/content/early/2020/02/25/1912754117